Beverage Antenna

Metric Conversion

Smith Chart

Wire Gauge Tabel

Standard VS American Wire Gauge

SWG Diameter (inch) Nearest AWG
12 0.104 10
14 0.08 12
16 0.064 14
18 0.048 16
20 0.036 19
22 0.028 21
24 0.022 23
26 0.018 25
28 0.148 27
30 0.0124 28
32 0.0108 29
34 0.0092 31
36 0.0076 32
38 0.006 34
40 0.0048 36
42 0.004 38
44 0.0032 40
46 0.0024 --

Standard vs American Wire Gauge.

Short Wave Antenna

LW Antenna


Long wave band, medium wave band, short wave band commonly used long wire as antennas . A long wire antenna is one that is long compared to a wavelength . A minimum length is one-half wave- length. However, antennas that are at least several wavelengths long are needed to obtain good gain and directional characteristics. Constructing long wire antennas is simple, and there are no critical dimensions or adjustments. A long wire antenna will accept power
and radiate it well on any frequency for which its overall length is not less than one-half wavelength.
Long wave Antenna construction design 

The gain and take-off angle of a long wire antenna depend on the antenna's length. The longer the antenna, the more gain, and the lower the take-off angle. Gain has a simple relationship to length; however, take-off angle is a bit more complicated. A long wire antenna radiates a cone of energy around the tie wire, much like a funnel with the antenna wire passing through the funnel opening. The narrow part of the funnel would be the feed point, and the open part would be toward the distant station. If the funnel were cut in half, the resulting half cone would represent the pattern of the antenna. As the antenna is lengthened, the cone of radiation (funnel) moves closer and closer to the wire. 

long wave antenna radiation pattern
Long wave antenna radiation pattern

changes as the wire is lengthened. The patterns represent a view from directly below the antenna.
In the three-wavelength pattern, for very low-angle radiation, posi- tion the wire somewhat away from the direction of the distant sta- tion so that the main lobe 
of radiation points at the receiving station. If a higher take-off angle is required, point the wire directly at the distant station.

LW Antenna Off Axis Angle Table


For take-off angles from 5 to 25 feet, the following general off-axis angles will provide satisfactory radiation on toward the distant station To make a long wire antenna directional, place a terminating device at the distant station end of the antenna. The terminating device should be a 600-ohm, noninductive resistor capable of absorbing at least one-half of the transmitter power. Terminating resistors are components of some radio sets but can also be fabricated locally using supply system components (100-watt, 106-ohm resistor).
Constructing a long wire antenna requires only wire, support poles, insulators, and a terminating resistor (if directionality is desired). The only requirement is that the antenna be strung in as straight a line as the situation permits. The antenna is only 15 to 20 feet above ground, so tall support structures are not required.

The antenna is normally fed through a coupler that can match the antenna's 600- ohm impedance. Coaxial cable can be used if a 12 to 1 balun is available to convert the coaxial cable 50-ohm impedance to the required 600 ohms. Vertical radiation plots of this antenna are not presented because of the great variation in the pattern as the length changes. For take-off angles between 5 and 25 feet, use the off-axis graph as shows in table and the gain versus length graph  to determine the proper antenna length. 

LW Antenna Gain versus Length


Characteristics LW Antenna are—

Frequency range: 2 to 30 MHz
Polarization: Vertical 
Power capability: 1 ,000 watts
Radiation pattern Azimuthal (bearing): Bidirectional with terminating resistor
Vertical (take-off angle): Depends on length

TV Antenna

TV Transmitter :
  • TV Antenna Guide, A Brief of TV Antenna TV Transmitter Planning Guide from Dielectric Communications.

Antenna Fundamental

UHF Antenna

Antenna Software

These software's, I link to http://www.iw5edi.com/ A Ham Radio Operator from Florence.
  • Antenna Maker's, A freeware dos program from John Agreulis, still actual.
  • Cobracom - Waveguide, Oscilloscope, Realtime Spectrum Analyzer, Signal Generator for Windows Application.
  • Yagi Designer, Yagi Designer 2.0 Program Running in Windows.
These software's I link to http://www.dxzone.com/

Satellite Receiver Antenna

Build DIY Dual Stacked 300 MHz- 3000 MHz WideBand Yagi TV Antenna, GSM and WIFI Antenna


This Dual Stacked Yagi Antenna can be used for UHF, GSM, WiFi Band from 300 MHz-3000 MHz. The design was done using Yagi Antenna Calculator ANSOF software, you can download  ANSOF trial version for free and also for the paid version, which calculated the length , diameter, and spacing of the materials (elements and boom) used in the construction. 

The Identical Yagi Antennas were stacked (1020 mm center to center spacing) vertically leading to an increase in gain of 15.4 dB when compared with 12.7 dB gain obtainable from a single Yagi antenna and larger capture area (effective aperture).

This research are written by J.llonno, M. Awoji, J.E Onuh from Physics Department, University of Jos, Jos, Nigeria and Physics Department, Kwararafa University, Wukari, Tarabe state, Nigeria

This design was able to solve the problems of underground noise, interference, low picture quality, low gain, and large beamwidth associatedwith a single Yagi antenna. This antenna can be used for VHF,UHF,GSM, Wi-Fi Band  (300–3000 MHz) applications.

Yagi antenna is an example of a resonant directional antenna consisting of driven elements (active components) and parasitic elements (passive components).

An antenna is an arrangement of electrical conductors designed as transceivers of radio waves (Carr, 2001; Volakis, 2007). Antennas convert Radio Frequency (RF) electrical currents into ElectroMagnetic (EM) waves that generate a radiating electromagnetic field.

The driven elements are connected directly to the transmission line (coaxial cable) and receive power from the source. Whereas, the parasitic elements are not connected to the transmission line and receive energy only through mutual induction. Theparasitic elements (directors and reflectors) modify the radiation pattern of the radio waves emitted by the driven element and direct them in a narrow beam in one direction and are arranged parallel to the driven elements. 

The reflector is usually longer than the driven element by 5% and acts as a concave mirror because it reflects the electromagnetic energy incident on it from the driven elements. The director is shorter than the driven element by 5% and acts as a convex mirror as it beams up the incident energy from driven element 
(Milligan, 2005). 

Antenna gain is the measure of the ability of antenna arrays to concentrate the radiated power in a given direction. High-gain antenna radiates energy in a particular direction whereaslow-gain antenna radiates energy in all directions equally. Gain is described using terms suc has antenna gain, power gain, directivity or directive gain. The antenna gain of the Yagi antenna isgreatly dependent on the dipole gain and the number of elements; and is given by (Ochalaand Okeme, 2011): 

 G = 1.66 N     (1) 
 
where 1.66 is the dipole gain and N is the number of elements 
When Yagi antennas are stacked, there is an increase in gain and a decrease in the beam-width. The increased gain is due to the reduction in beam-width. 

There are two types of stacking namely; vertical stacking and horizontal stacking (Blake, 1996; Balanis, 2005, 2008). Stacking two identical antennas on a common vertical mast as seen in Figure 2 significantly narrows the vertical beam-width angle. 

That is, vertically stacked antennas effectively reject those interfering signals arriving from above or below their horizontal plane than that of a single antenna. In this process, gain increases with about 2.5 dB over that of a single antenna (Straw, 2000). 

While stacking two identical Yagi antennas side by side in a horizontal plane significantly narrows the horizontal beam-width angle. That is, the antenna combination “sees” fewer interfering signals arriving from the sides while its vision up and down (in a vertical plane) is virtually unaffected. In this process, gain increases approximately 1.2 dB over that of a single antenna (Straw, 2000). 

The stacking distance can be calculated using Equation 2 (Milligan, 2005). 
 
                       S = 57/BW  (2)  

where S is the stacking distance and BW is the Beam-Width angle 
 
This research work is carried out to solve the problems of underground noise, interference, picture quality, low gain, and large beam-width associated with a single Yagi antenna by stacking two identical Yagi antennas. Vertical stacking was used in the implementation because of the higher gain and greater coverage area. 

Materials and Methods 
 
Materials The materials used are: 
1. Aluminum Boom 
2. Screw nails 
3. Elements  
4. Coaxial cable (75 Ω) 
5. Plastic insulators 
6. Tape  
7. Drilling machine 
8. Hacksaw 
9. Mast or pole for mounting of the antenna 
 
Methods Design of Yagi Antenna An online Yagi antenna calculator (AN-SOF Antenna Simutor) was used for the simulation with design frequency of 889 MHz. The Yagi antenna designed has 8 elements: a reflector, a driven element, and 6 directors with dimensions shown in Table 2 
 
Design Implementation The antenna was constructed using aluminum rods for antenna elements, 2cm-squared metal rodas boom, hacksaw for cutting the materials, gimlet for drilling holes, screw nails for fastening theelements to the boom, measuring tape, welding machine, 75-ohm coaxial cable as transmissionline and feeders to house the terminals of the folded dipoles.

The elements were first measured as stated in Table 2. Holes were drilled at the midpoints of the aluminum rods and boom constructed. A reflectorunit and six directors were cut out. Holes were drilled on them and the directors were screwed into their appropriate positions.

Plastic insulators were used to insulate the directors form the supporting boom.The folded dipole (driven element) was constructed by folding aluminium rod on a bending jig to obtain the folded dipole.A junction box was used to support the folded dipole on the boom. 

Openings were made on the side of the junction box using a drilling machine to allow fitting of the dipole and the coaxial cable. The feeder was fixed to the director boom with screw nails and the terminal of the folded dipole was then fixed to the inside of the feeder. 

With the feeder and folded dipole in place, the reflector and director units were fixed.The relative spacing between elements for optimal reception was determined as follows as shown in Table 3.The antenna was duplicated and were stacked vertically at 1020 mm.  Table below shows Length of rodrequired to produce resonant dipole 
Length to Diameter Ratio (L/D)Percent Shortening requiredResonant lengthDipole thickness class
500020.49LambdaVery thin
5050.475LambdaThin
1090.455LambdaThick

Approximately one wavelength spacing (at lowest channel frequency) between antennas was maintained. 

Finally, the folded dipoles were connected together by means ofa coaxial cable which serves as the transmission line. Table below shows Simulation Result.

ElementDistance fro driving point of driven element (mm)Distance expressed as fractions of the wavelength
Reflector1390.28
Director 1550.11
Director 21100.23
Director 31650.34
Director 42750.56
Director 53850.8
Director 64951.02
                                
Table below shows Normalised Spacing betwen Elements               

Relative Spacing
s0,-10.29 Lambda
s0,10.110 Lambda
s1,20,227 Lambda
s2,30,227 Lambda
s3,40,227 Lambda
s4,50,227 Lambda
s5,60,227 Lambda


Table below shows Single and Stacked Yagi Results compared
 
The results of this finding have shown that dualstacked Yagi antenna offers high gain compared with single Yagi antenna in operation covering channels in VHF, UHF,GSM, and Wi-Fi bands. This design when properly matched to a feeder cable can solve the problems of underground noise, interference, low picture quality, low gain, 
and large beam-width posed by single Yagi antenna. 
 
ParametersSingle YagiStacked Yagi
Forward Gain12.720 dB15.400 dB
Backward Gain3.415 dB4.394 dB
Front-Back Ratio9.306 dB11.006 dB
Beam-Width47 degrees23.5 degrees
Signal Strength67%76%
Stacking Distance-
1020

Wi-fi Antenna