One of the rarely discussed aspects of antenna construction is that the length/diameter ratio of the conductor used for the antenna element is a factor in determining the bandwidth of the antenna. In general, the rule of thumb states that large cross-sectional area makes the antenna more broadbanded. In some cases, this rule suggests the use of aluminum tubing instead of copper wire for the antenna radiator. On the higher-frequency bands that is a viable solution. Aluminum tubing can be purchased for relatively small amounts of money, and is both lightweight and easily worked with ordinary tools. But, as the frequency decreases, the weight becomes greater because the tubing is both longer and (for structural strength) must be of greater diameter. On 80 m, aluminum tubing is impractical, and at 40 m it is nearly so. Yet, 80 m is a significant problem, especially for older transmitters, because the band is 500 kHz wide, and the transmitters often lack the tuning range for the entire band. Some other solution is needed. Here are three basic solutions to the problem of wide-bandwidth dipole antennas: folded dipole, bowtie dipole, and cage dipole.
Figure 6-10A shows the folded dipole antenna. This antenna basically consists of two half-wavelength conductors shorted together at the ends and fed in the middle of one of them. The folded dipole is most often built from 300-Ω television antenna twin-lead transmission line. Because the feedpoint impedance is nearly 300 Ω, the same type of twin lead can also be used for the transmission line. The folded dipole will exhibit excellent wide-bandwidth properties, especially on the lower bands.
A disadvantage of this form of antenna is that the transmitter has to match the 300-Ω balanced transmission line. Unfortunately, most modern radio transmitters are designed to feed coaxial-cable transmission line. Although an antenna tuner can be placed at the transmitter end of the feedline, it is also possible to use a 4:1 balun transformer at the feedpoint (Fig. 6-10B). This arrangement makes the folded dipole a reasonable match to 52- or 75-Ω coaxial-cable transmission line.
Another method for broadbanding the dipole is to use two identical dipoles fed from the same transmission line, and arranged to form a “bowtie” as shown in Fig. 6-11. The use of two identical dipole elements on each side of the transmission line has the effect of increasing the conductor cross sectional area so that the antenna has a slightly improved length/diameter ratio.
The bowtie dipole was popular in the 1930s and 1940s, and became the basis for the earliest television receiver antennas (TV signals are 3 to 5 MHz wide, so they require a broadbanded antenna). It was also popular during the 1950s as the so-called Wonder Bar antenna for 10 m. It still finds use, but it has faded somewhat in popularity.
The cage dipole (Fig. 6-12) is similar in concept, if not construction, to the bowtie. Again, the idea is to connect several parallel dipoles together from the same transmission line in an effort to increase the apparent cross-sectional area. In the case of the cage dipole, however, spreader disk insulators are constructed to keep the wires separated. The insulators can be built from plexiglass, lucite, or ceramic.
They can also be constructed of materials such as wood, if the wood is properly treated with varnish, polyurethene, or some other material that prevents it from becoming waterlogged. The spreader disks are held in place with wire jumpers (see inset to Fig. 6-12) that are soldered to the main element wires.
A tactic used by some builders of both bowtie and cage dipoles is to make the elements slightly different lengths. This “stagger tuning” method forces one dipole to favor the upper end of the band, and the other to favor the lower end of the band. The overall result is a slightly flatter frequency response characteristic across the entire band. On the cage dipole, with four half-wavelength elements, it should be possible to overlap even narrower sections of the band in order to create an even flatter characteristic.
From Book : Practical Antenna Handbook - Joseph P. Carr
No comments:
Post a Comment