For example, a boater found himself adrift, and in dire trouble, after a storm damaged the boat. The mast-top VHF antenna was washed away, leaving only the end of the coaxial cable dangling loose. Fortunately, the boat operator was a two-way radio technician, and he knew how to strip back the coaxial cable to make an impromptu coaxial vertical.
The coax-coax antenna shown in Fig. 18-5A uses a quarter-wavelength radiator and a quarter-wavelength sleeve. The sleeve consists of the coax braid stripped back and folded down the length of the coax cable. The maximum length is found from the equation below (actual length is trimmed from this maximum):
The antenna is mounted by suspending it from above by a short piece of string, twine, or fishing line. From a practical point of view, the only problem with this form of antenna is that it tends to deteriorate after a few rainstorms. This effect can be reduced by sealing the end, and the break between the sleeve and the radiator, with either silicone RTV or bathtub caulk. A more permanent method of construction is shown in Fig. 18-5B. The sleeve is a piece of copper or brass tubing (pipe) about 1 in in diameter. An end cap is fitted over the end and sweat-soldered into place. The solder is not intended to add mechanical strength, but rather to prevent weathering from destroying the electrical contact between the two pieces. An SO-239 coaxial connector is mounted on the end cap. The coax is connected to the SO-239 inside the pipe, which means making the connection before mounting the end cap.
The radiator element is a small piece of tubing (or brazing rod) soldered to the center conductor of a PL-259 coaxial connector. An insulator is used to prevent the rod from shorting to the outer shell of the PL-259. (Note: an insulator salvaged from the smaller variety of banana plug can be shaved a small amount with a fine file and made to fit inside the PL-259. It allows enough center clearance for 1⁄8-inch or 3⁄16-inch brass tubing.) Alternatively, the radiator element can be soldered to a banana plug. The normalsize banana plug happens to fit into the female center conductor of the SO-239.
The coax-coax antenna shown in Fig. 18-5A uses a quarter-wavelength radiator and a quarter-wavelength sleeve. The sleeve consists of the coax braid stripped back and folded down the length of the coax cable. The maximum length is found from the equation below (actual length is trimmed from this maximum):
The antenna is mounted by suspending it from above by a short piece of string, twine, or fishing line. From a practical point of view, the only problem with this form of antenna is that it tends to deteriorate after a few rainstorms. This effect can be reduced by sealing the end, and the break between the sleeve and the radiator, with either silicone RTV or bathtub caulk. A more permanent method of construction is shown in Fig. 18-5B. The sleeve is a piece of copper or brass tubing (pipe) about 1 in in diameter. An end cap is fitted over the end and sweat-soldered into place. The solder is not intended to add mechanical strength, but rather to prevent weathering from destroying the electrical contact between the two pieces. An SO-239 coaxial connector is mounted on the end cap. The coax is connected to the SO-239 inside the pipe, which means making the connection before mounting the end cap.
The radiator element is a small piece of tubing (or brazing rod) soldered to the center conductor of a PL-259 coaxial connector. An insulator is used to prevent the rod from shorting to the outer shell of the PL-259. (Note: an insulator salvaged from the smaller variety of banana plug can be shaved a small amount with a fine file and made to fit inside the PL-259. It allows enough center clearance for 1⁄8-inch or 3⁄16-inch brass tubing.) Alternatively, the radiator element can be soldered to a banana plug. The normalsize banana plug happens to fit into the female center conductor of the SO-239.
No comments:
Post a Comment