Vee-sloper antenna

The vee-sloper antenna is shown in Fig. 6-22. It is related to the vee beam (covered in Chap. 9), but it is built like a sloper (i.e., with the feed end of the antenna high above ground). The supporting mast height should be about half (to three-fourths) of the length of either antenna leg. The legs are sloped downward to terminating



resistors at ground level. Each wire should be longer than 1λat the lowest operating frequency. The terminating resistors should be on the order of 270 Ω(about one-half of the characteristic impedance of the antenna), with a power rating capable of dissipating one-third of the transmitter power. Like other terminating resistors, these should be noninductive (carbon composition or metal film). The advantage of this form of antenna over the vee beam is that it is vertically polarized, and the resistors are close to the earth, so they are easily grounded.

From The Book : "Practical Antenna Handbook - Joseph P. Carr"

The TCFTFD dipole

The tilted, center-fed, terminated, folded dipole(TCFTFD, also called the T2FD or TTFD) is an answer to both the noise pickup and length problems that sometimes affect other antennas. For example, a random-length wire, even with antenna tuner, will pick up considerable amounts of noise. A dipole for 40 m is 66 ft long.

This antenna was first described publicly in 1949 by Navy Captain C. L. Countryman, although the U.S. Navy tested it for a long period in California during World War II. The TCFTFD can offer claimed gains of 4 to 6 dB over a dipole, depending on the frequency and design, although 1 to 3 dB is probably closer to the mark in practice, and less than 1 dB will be obtained at some frequencies within its range (especially where the resistor has to absorb a substantial portion of the RF power). The main attraction of the TCFTFD is not its gain, but rather its broad bandedness.

In addition, the TCFTFD can also be used at higher frequencies than its design frequency. Some sources claim that the TCFTFD can be used over a 5 or 6:1 frequency range, although my own observations are that 4:1 is more likely. Nonetheless, a 40-m antenna will work over a range of 7000 to 25,000 kHz, with at least some decent performance up into the 11-m Citizen’s Band (27,000 kHz).

The basic TCFTFD (Fig. 6-21) resembles a folded dipole in that it has two parallel conductors of length L, spaced a distance W apart, and shorted together at the




ends. The feedpoint is the middle of one conductor, where a 4:1 balun coil and 75-Ω coaxial-cable transmission line to the transceiver are used. A noninductive, 390-Ω resistor is placed in the center of the other conductor. This resistor can be a carbon-composition (or metal-film) resistor, but it must not be a wirewound resistor or any other form that has appreciable inductance. The resistor must be able to dissipate about one-third of the applied RF power. The TCFTFD can be built from ordinary no.14 stranded antenna wire.

For a TCFTFD antenna covering 40 through 11 m, the spread between the conductors should be 191⁄2 in, while the length L is 27 ft. Note that length L includes one-half of the 19-in spread because it is measured from the center of the antenna element to the center of the end supports.

The TCFTFD is a sloping antenna, with the lower support being about 6 ft off the ground. The height of the upper support depends on the overall length of the antenna. For a 40-m design, the height is on the order of 50 ft.

The parallel wires are kept apart by spreaders. At least one commercial TCFTFD antenna uses PVC spreaders, while others use ceramic. You can use wooden dowels of between 1-in and 5⁄8-in diameter; of course, a coating of varnish (or urethane spray) is recommended for weather protection. Drill two holes, of a size sufficient to pass the wire, that are the dimension W apart (19 in for 40 m). Once the spreaders are in place, take about a foot of spare antenna wire and make jumpers to hold the dowels in place. The jumper is wrapped around the antenna wire on either side of the dowel, and then soldered.

The two end supports can be made of 1 × 2 in wood treated with varnish or urethane spray. The wire is passed through screw eyes fastened to the supports. A support rope is passed through two holes on either end of the 1 × 2 and then tied off at an end insulator.

The TCFTFD antenna is noticeably quieter than the random-length wire antenna, and somewhat quieter than the half-wavelength dipole. When the tilt angle is around 30°, the pattern is close to omnidirectional. Although a little harder to build than dipoles, it offers some advantages that ought not to be overlooked. These dimensions will suffice when the “bottom end” frequency is the 40-m band, and it will work well on higher bands.

From The Book " Practical Antenna Handbook " Joseph P. Carr

Collinear “Franklin” array antenna

Perhaps the cheapest approach to very serious antenna gain is the collinear Franklin array shown in Fig. 6-20. This antenna pushes the dipole and double extended Zepp concepts even farther. It consists of a half-wavelength dipole that is center-fed with a 4:1 balun and 75-Ω coaxial cable. At each end of the dipole, there is a quarter-wavelength phase reversal stub that end-feeds another half-wavelength element. Each element is a half-wavelength (λ/2) long, and its length can be calculated from



The phase reversal stubs are a quarter-wavelength long, or one half the length calculated by Eq. 6.28.


The version of the “Collinear” shown in Fig. 6-20 has a gain of about 3 dB. There is no theoretical reason why you can’t extend the design indefinitely, but there is a practical limit set by how much wire can be held by your supports, and how much real estate you own. A 4.5-dB version can be built by adding another half-wavelength section at each end, with an intervening quarter-wavelength phase reversal stub in between each new section, and the preceding section. Once you get longer than five half-wavelengths, which provides the 4.5-dB gain, the physical size becomes a bit of a bother for most folks.

From Book Practical Antenna Handbook - Joseph P. Carr







Double extended Zepp antenna

The double extended Zepp antenna (Fig. 6-19) provides a gain of about 2 dB over a dipole at right angles to the antenna wire plane. It consists of two sections of wire, each one of a length



Typical lengths are 20.7 ft on the 10-m band, 28 ft on the 15-m band, 42 ft on the 20-m band, and 84 ft on the 40-m band. The double extended Zepp antenna can be fed directly with 450-Ωtwin lead,  especially if a balanced antenna tuner is available at the receiver. Alternatively, it can be fed from a quarter-wavelength matching section (made of 450-Ω twin lead, or equivalent open air parallel line), as shown, and a balun if coax is preferred. The length of the matching section should be

The double extended Zepp will work on several different bands. For example, a 20-m-band double extended Zepp will work as a Zepp on the design band, a dipole on frequencies below the design band, and as a four-lobed cloverleaf antenna on frequencies above the design band.

From Practical Antenna Handbook - Joseph P. Carr

Broadband Dipoles

One of the rarely discussed aspects of antenna construction is that the length/diameter ratio of the conductor used for the antenna element is a factor in determining the bandwidth of the antenna. In general, the rule of thumb states that large cross-sectional area makes the antenna more broadbanded. In some cases, this rule suggests the use of aluminum tubing instead of copper wire for the antenna radiator. On the higher-frequency bands that is a viable solution. Aluminum tubing can be purchased for relatively small amounts of money, and is both lightweight and easily worked with ordinary tools. But, as the frequency decreases, the weight becomes greater because the tubing is both longer and (for structural strength) must be of greater diameter. On 80 m, aluminum tubing is impractical, and at 40 m it is nearly so. Yet, 80 m is a significant problem, especially for older transmitters, because the band is 500 kHz wide, and the transmitters often lack the tuning range for the entire band. Some other solution is needed. Here are three basic solutions to the problem of  wide-bandwidth dipole antennas: folded dipole, bowtie dipole, and cage dipole.


Figure 6-10A shows the folded dipole antenna. This antenna basically consists of two half-wavelength conductors shorted together at the ends and fed in the middle of one of them. The folded dipole is most often built from 300-Ω television antenna twin-lead transmission line. Because the feedpoint impedance is nearly 300 Ω, the same type of twin lead can also be used for the transmission line. The folded dipole will exhibit excellent wide-bandwidth properties, especially on the lower bands.

A disadvantage of this form of antenna is that the transmitter has to match the 300-Ω balanced transmission line. Unfortunately, most modern radio transmitters are designed to feed coaxial-cable transmission line. Although an antenna tuner can be placed at the transmitter end of the feedline, it is also possible to use a 4:1 balun transformer at the feedpoint (Fig. 6-10B). This arrangement makes the folded dipole a reasonable match to 52- or 75-Ω coaxial-cable transmission line.

Another method for broadbanding the dipole is to use two identical dipoles fed from the same transmission line, and arranged to form a “bowtie” as shown in Fig. 6-11. The use of two identical dipole elements on each side of the transmission line has the effect of increasing the conductor cross sectional area so that the antenna has a slightly improved length/diameter ratio.

The bowtie dipole was popular in the 1930s and 1940s, and became the basis for the earliest television receiver antennas (TV signals are 3 to 5 MHz wide, so they require a broadbanded antenna). It was also popular during the 1950s as the so-called Wonder Bar antenna for 10 m. It still finds use, but it has faded somewhat in popularity.

The cage dipole (Fig. 6-12) is similar in concept, if not construction, to the bowtie. Again, the idea is to connect several parallel dipoles together from the same transmission line in an effort to increase the apparent cross-sectional area. In the case of the cage dipole, however, spreader disk insulators are constructed to keep the wires separated. The insulators can be built from plexiglass, lucite, or ceramic.


They can also be constructed of materials such as wood, if the wood is properly treated with varnish, polyurethene, or some other material that prevents it from becoming waterlogged. The spreader disks are held in place with wire jumpers (see inset to Fig. 6-12) that are soldered to the main element wires.

A tactic used by some builders of both bowtie and cage dipoles is to make the elements slightly different lengths. This “stagger tuning” method forces one dipole to favor the upper end of the band, and the other to favor the lower end of the band. The overall result is a slightly flatter frequency response characteristic across the entire band. On the cage dipole, with four half-wavelength elements, it should be possible to overlap even narrower sections of the band in order to create an even flatter characteristic.

From Book : Practical Antenna Handbook - Joseph P. Carr